If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(x^2)+4x=150
We move all terms to the left:
2(x^2)+4x-(150)=0
a = 2; b = 4; c = -150;
Δ = b2-4ac
Δ = 42-4·2·(-150)
Δ = 1216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1216}=\sqrt{64*19}=\sqrt{64}*\sqrt{19}=8\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-8\sqrt{19}}{2*2}=\frac{-4-8\sqrt{19}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+8\sqrt{19}}{2*2}=\frac{-4+8\sqrt{19}}{4} $
| 2x^2+4x=150 | | 14+t=53 | | f2-(4f-2f2-8)=3f2+4f-8 | | 133b-5=8 | | 1.6x+4=-2.4 | | 8x-133=5 | | 7-4(-6x-1)=-8 | | 3.6x+3=6 | | 8b-133=5 | | 2(s+11)=5(s+2$ | | (3.6)/x+3=6 | | 7x-9+3x=6x-3 | | -5+5=5x/8+x | | 9w-126+126=45+126 | | 11x±1=7 | | x/3=8=17 | | 3(x-1)-8=4(1 | | (3)n=9n-5 | | 5x/8+x=0 | | (7x-32)=(6x-18) | | 4(3x-6)=10 | | 4n+22=-5(6-6n) | | -5x=-5/3x+2/9 | | -3(2x-2)=-4 | | 5+44=2+r= | | 5×2^x=34 | | -6x+8=23 | | 2^x=6.8 | | -3(-3x-4)=-15x+2 | | 8z=20z | | 1/3x+1/2=7/3x | | 5x+18=-6x-15 |